Papers
Topics
Authors
Recent
2000 character limit reached

Voter model under stochastic resetting (2207.08590v6)

Published 18 Jul 2022 in cond-mat.stat-mech

Abstract: The voter model is a toy model of consensus formation based on nearest-neighbor interactions. A voter sits at each vertex in a hypercubic lattice (of dimension $d$) and is in one of two possible opinion states. The opinion state of each voter flips randomly, at a rate proportional to the fraction of the nearest neighbors that disagree with the voter. If the voters are initially independent and undecided, the model is known to lead to a consensus if and only if $d\leq 2$. In this paper the model is subjected to stochastic resetting: the voters revert independently to their initial opinion according to a Poisson process of fixed intensity (the resetting rate). This resetting prescription induces kinetic equations for the average opinion state and for the two-point function of the model. For initial conditions consisting of undecided voters except for one decided voter at the origin, the one-point function evolves as the probability of presence of a diffusive random walker on the lattice, whose position is stochastically reset to the origin. The resetting prescription leads to a non-equilibrium steady state. For an initial state consisting of independent undecided voters, the density of domain walls in the steady state is expressed in closed form as a function of the resetting rate. This function is differentiable at zero if and only if $d\geq 5$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.