Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized PCA: Decoupling Shared and Unique Features (2207.08041v2)

Published 17 Jul 2022 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: In this paper, we tackle a significant challenge in PCA: heterogeneity. When data are collected from different sources with heterogeneous trends while still sharing some congruency, it is critical to extract shared knowledge while retaining the unique features of each source. To this end, we propose personalized PCA (PerPCA), which uses mutually orthogonal global and local principal components to encode both unique and shared features. We show that, under mild conditions, both unique and shared features can be identified and recovered by a constrained optimization problem, even if the covariance matrices are immensely different. Also, we design a fully federated algorithm inspired by distributed Stiefel gradient descent to solve the problem. The algorithm introduces a new group of operations called generalized retractions to handle orthogonality constraints, and only requires global PCs to be shared across sources. We prove the linear convergence of the algorithm under suitable assumptions. Comprehensive numerical experiments highlight PerPCA's superior performance in feature extraction and prediction from heterogeneous datasets. As a systematic approach to decouple shared and unique features from heterogeneous datasets, PerPCA finds applications in several tasks, including video segmentation, topic extraction, and feature clustering.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com