Papers
Topics
Authors
Recent
2000 character limit reached

Learning Representations for CSI Adaptive Quantization and Feedback (2207.06924v1)

Published 13 Jul 2022 in eess.SP and cs.LG

Abstract: In this work, we propose an efficient method for channel state information (CSI) adaptive quantization and feedback in frequency division duplexing (FDD) systems. Existing works mainly focus on the implementation of autoencoder (AE) neural networks (NNs) for CSI compression, and consider straightforward quantization methods, e.g., uniform quantization, which are generally not optimal. With this strategy, it is hard to achieve a low reconstruction error, especially, when the available number of bits reserved for the latent space quantization is small. To address this issue, we recommend two different methods: one based on a post training quantization and the second one in which the codebook is found during the training of the AE. Both strategies achieve better reconstruction accuracy compared to standard quantization techniques.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.