Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Computing Relevant Features for Explaining NBCs (2207.04748v1)

Published 11 Jul 2022 in cs.LG and cs.AI

Abstract: Despite the progress observed with model-agnostic explainable AI (XAI), it is the case that model-agnostic XAI can produce incorrect explanations. One alternative are the so-called formal approaches to XAI, that include PI-explanations. Unfortunately, PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size. The computation of relevant features serves to trade off probabilistic precision for the number of features in an explanation. However, even for very simple classifiers, the complexity of computing sets of relevant features is prohibitive. This paper investigates the computation of relevant sets for Naive Bayes Classifiers (NBCs), and shows that, in practice, these are easy to compute. Furthermore, the experiments confirm that succinct sets of relevant features can be obtained with NBCs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.