Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mechanisms that Incentivize Data Sharing in Federated Learning

Published 10 Jul 2022 in cs.GT, cs.CY, cs.DC, cs.LG, and econ.TH | (2207.04557v1)

Abstract: Federated learning is typically considered a beneficial technology which allows multiple agents to collaborate with each other, improve the accuracy of their models, and solve problems which are otherwise too data-intensive / expensive to be solved individually. However, under the expectation that other agents will share their data, rational agents may be tempted to engage in detrimental behavior such as free-riding where they contribute no data but still enjoy an improved model. In this work, we propose a framework to analyze the behavior of such rational data generators. We first show how a naive scheme leads to catastrophic levels of free-riding where the benefits of data sharing are completely eroded. Then, using ideas from contract theory, we introduce accuracy shaping based mechanisms to maximize the amount of data generated by each agent. These provably prevent free-riding without needing any payment mechanism.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.