Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Red PANDA: Disambiguating Anomaly Detection by Removing Nuisance Factors (2207.03478v1)

Published 7 Jul 2022 in cs.CV and cs.LG

Abstract: Anomaly detection methods strive to discover patterns that differ from the norm in a semantic way. This goal is ambiguous as a data point differing from the norm by an attribute e.g., age, race or gender, may be considered anomalous by some operators while others may consider this attribute irrelevant. Breaking from previous research, we present a new anomaly detection method that allows operators to exclude an attribute from being considered as relevant for anomaly detection. Our approach then learns representations which do not contain information over the nuisance attributes. Anomaly scoring is performed using a density-based approach. Importantly, our approach does not require specifying the attributes that are relevant for detecting anomalies, which is typically impossible in anomaly detection, but only attributes to ignore. An empirical investigation is presented verifying the effectiveness of our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.