Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Modeling of Language-Evoked Event-Related Potentials

Published 7 Jul 2022 in q-bio.QM, cs.CL, and q-bio.NC | (2207.03392v1)

Abstract: Bayesian hierarchical models are well-suited to analyzing the often noisy data from electroencephalography experiments in cognitive neuroscience: these models provide an intuitive framework to account for structures and correlations in the data, and they allow a straightforward handling of uncertainty. In a typical neurolinguistic experiment, event-related potentials show only very small effect sizes and frequentist approaches to data analysis fail to establish the significance of some of these effects. Here, we present a Bayesian approach to analyzing event-related potentials using as an example data from an experiment which relates word surprisal and neural response. Our model is able to estimate the effect of word surprisal on most components of the event-related potential and provides a richer description of the data. The Bayesian framework also allows easier comparison between estimates based on surprisal values calculated using different LLMs.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.