Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Machine learning of percolation models using graph convolutional neural networks (2207.03368v2)

Published 7 Jul 2022 in cond-mat.stat-mech, cond-mat.dis-nn, and cs.LG

Abstract: Percolation is an important topic in climate, physics, materials science, epidemiology, finance, and so on. Prediction of percolation thresholds with machine learning methods remains challenging. In this paper, we build a powerful graph convolutional neural network to study the percolation in both supervised and unsupervised ways. From a supervised learning perspective, the graph convolutional neural network simultaneously and correctly trains data of different lattice types, such as the square and triangular lattices. For the unsupervised perspective, combining the graph convolutional neural network and the confusion method, the percolation threshold can be obtained by the "W" shaped performance. The finding of this work opens up the possibility of building a more general framework that can probe the percolation-related phenomenon.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.