Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reservoir Computing with 3D Nanowire Networks

Published 7 Jul 2022 in physics.comp-ph and cs.ET | (2207.03070v1)

Abstract: Networks of nanowires are currently being explored for a range of applications in brain-like (or neuromorphic) computing, and especially in reservoir computing (RC). Fabrication of real-world computing devices requires that the nanowires are deposited sequentially, leading to stacking of the wires on top of each other. However, most simulations of computational tasks using these systems treat the nanowires as 1D objects lying in a perfectly 2D plane - the effect of stacking on RC performance has not yet been established. Here we use detailed simulations to compare the performance of perfectly 2D and quasi-3D (stacked) networks of nanowires in two tasks: memory capacity and nonlinear transformation. We also show that our model of the junctions between nanowires is general enough to describe a wide range of memristive networks, and consider the impact of physically realistic electrode configurations on performance. We show that the various networks and configurations have a strikingly similar performance in RC tasks, which is surprising given their radically different topologies. Our results show that networks with an experimentally achievable number of electrodes perform close to the upper bounds achievable when using the information from every wire. However, we also show important differences, in particular that the quasi-3D networks are more resilient to changes in the input parameters, generalizing better to noisy training data. Since previous literature suggests that topology plays an important role in computing performance, these results may have important implications for future applications of nanowire networks in neuromorphic computing.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.