Bouncing and collapsing universes dual to late-time cosmological models (2207.02835v4)
Abstract: We use the Jordan frame-Einstein frame correspondence to explore dual universes with contrasting cosmological evolutions. We study the mapping between Einstein and Jordan frames where the Einstein frame universe describes the late-time evolution of the physical universe, which is driven by dark energy and non-relativistic matter. The Brans-Dicke theory of gravity is considered to be the dual scalar-tensor theory in the Jordan frame. We show that an Einstein frame universe, with cosmological evolution of the $\Lambda$CDM model, always corresponds to a bouncing Jordan frame universe governed by a Brans-Dicke theory. On the other hand, quintessence models of dark energy with non-relativistic matter component are shown to be always dual to a Brans-Dicke Jordan frame with a turn-around, i.e., a bounce or a collapse. The evolution of the equation of state of the quintessence field determines whether the turn-around is a bounce or a collapse. The point of the Jordan frame turn-around for all the cases can be tuned anywhere by choosing an appropriate Brans-Dicke parameter. This essentially leads to alternative descriptions of the late-time evolution of the physical universe, in terms of bouncing or collapsing Brans-Dicke universes in the Jordan frame. Therefore,the effect of dark energy can equivalently be seen as collapse of space in a conformally connected universe. We further study the stability of such conformal maps against linear perturbations. The effective bouncing and collapsing descriptions of the current accelerating universe may have interesting implications for the evolutions of perturbations and quantum fluctuations in the cosmological background.
- Valerio Faraoni. Cosmology in Scalar-Tensor Gravity. Springer Netherlands, Dordrecht, 2004. ISBN 9781402019890.
- Israel Quiros. Selected topics in scalar–tensor theories and beyond. International Journal of Modern Physics D, 28(07):1930012, May 2019. doi: 10.1142/s021827181930012x.
- The Scalar-Tensor Theory of Gravitation. Cambridge University Press, January 2003. doi: 10.1017/cbo9780511535093.
- f(R)𝑓𝑅f({R})italic_f ( italic_R ) theories. Living Reviews in Relativity, 13(1), June 2010. doi: 10.12942/lrr-2010-3.
- f(R)𝑓𝑅f({{R}})italic_f ( italic_R ) theories of gravity. Reviews of Modern Physics, 82(1):451–497, March 2010. doi: 10.1103/RevModPhys.82.451.
- Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept., 692:1–104, 2017. doi: 10.1016/j.physrep.2017.06.001.
- Valerio Faraoni. Einstein frame or jordan frame? International Journal of Theoretical Physics, 38(1):217–225, 1999. doi: 10.1023/a:1026645510351.
- Equivalence of the einstein and jordan frames. Physical Review D, 90(10), Nov 2014. ISSN 1550-2368. doi: 10.1103/physrevd.90.103516.
- Phantom scalar dark energy as modified gravity: Understanding the origin of the big rip singularity. Physics Letters B, 646(2-3):105–111, March 2007. ISSN 0370-2693. doi: 10.1016/j.physletb.2007.01.013.
- Cosmological bounces in spatially flat frw spacetimes in metric f(R)𝑓𝑅f({R})italic_f ( italic_R ) gravity. Journal of Cosmology and Astroparticle Physics, 2014(10):009–009, October 2014. doi: 10.1088/1475-7516/2014/10/009.
- Intricacies of cosmological bounce in polynomial metric f(R)𝑓𝑅f({R})italic_f ( italic_R ) gravity for flat flrw spacetime. Journal of Cosmology and Astroparticle Physics, 2016(02):030–030, February 2016. doi: 10.1088/1475-7516/2016/02/030.
- C. Wetterich. Universe without expansion. Physics of the Dark Universe, 2(4):184–187, dec 2013. doi: 10.1016/j.dark.2013.10.002. URL https://doi.org/10.1016%2Fj.dark.2013.10.002.
- C. Wetterich. Hot big bang or slow freeze? Physics Letters B, 736:506–514, sep 2014. doi: 10.1016/j.physletb.2014.08.013. URL https://doi.org/10.1016%2Fj.physletb.2014.08.013.
- The anamorphic universe. Journal of Cosmology and Astroparticle Physics, 2015(10):001–001, oct 2015. doi: 10.1088/1475-7516/2015/10/001. URL https://doi.org/10.1088%2F1475-7516%2F2015%2F10%2F001.
- Conflation: a new type of accelerated expansion. Journal of Cosmology and Astroparticle Physics, 2016(08):073–073, aug 2016. doi: 10.1088/1475-7516/2016/08/073. URL https://doi.org/10.1088%2F1475-7516%2F2016%2F08%2F073.
- Scalar field cosmologies with inverted potentials. Journal of Cosmology and Astroparticle Physics, 2015(10):033–033, October 2015a. ISSN 1475-7516. doi: 10.1088/1475-7516/2015/10/033. URL http://dx.doi.org/10.1088/1475-7516/2015/10/033.
- Dynamics of cosmological perturbations and reheating in the anamorphic universe. Journal of Cosmology and Astroparticle Physics, 2017(04):004–004, apr 2017. doi: 10.1088/1475-7516/2017/04/004. URL https://doi.org/10.1088%2F1475-7516%2F2017%2F04%2F004.
- Correspondence of F(R)𝐹𝑅F(R)italic_F ( italic_R ) Gravity Singularities in Jordan and Einstein Frames. Annals Phys., 373:96–114, 2016. doi: 10.1016/j.aop.2016.06.020.
- Deceleration versus acceleration universe in different frames of F(R)𝐹𝑅{F(R)}italic_F ( italic_R ) gravity. Physics Letters B, 766:225–230, March 2017. ISSN 0370-2693. doi: 10.1016/j.physletb.2017.01.012.
- Cosmological number counts in Einstein and Jordan frames. Journal of Cosmology and Astroparticle Physics, 2019(09):071–071, September 2019. doi: 10.1088/1475-7516/2019/09/071. URL https://doi.org/10.1088%2F1475-7516%2F2019%2F09%2F071.
- Evolution of scalar and vector cosmological perturbations through a bounce in metric f(R)𝑓𝑅f({R})italic_f ( italic_R ) gravity in flat flrw spacetime. Journal of Cosmology and Astroparticle Physics, 2019(11):019–019, November 2019. doi: 10.1088/1475-7516/2019/11/019.
- f(R)𝑓𝑅f({R})italic_f ( italic_R ) dual theories of quintessence: expansion-collapse duality. Journal of Cosmology and Astroparticle Physics, 2021(12):016, dec 2021. doi: 10.1088/1475-7516/2021/12/016.
- Dark Energy: Theory and Observations. Cambridge University Press, New York, 2010. ISBN 978-0-521-51600-6 978-1-107-45398-2.
- Yun Wang. Dark Energy. Wiley-VCH, Weinheim, 2010. ISBN 978-3-527-40941-9. OCLC: ocn473477047.
- Dynamics of dark energy. International Journal of Modern Physics D, 15(11):1753–1935, 2006. ISSN 0218-2718, 1793-6594. doi: 10.1142/S021827180600942X.
- T Padmanabhan. Cosmological constant—the weight of the vacuum. Physics Reports, 380(5-6):235–320, Jul 2003. ISSN 0370-1573. doi: 10.1016/s0370-1573(03)00120-0.
- Sean M. Carroll. The Cosmological Constant. Living Reviews in Relativity, 4(1):1, December 2001. ISSN 2367-3613, 1433-8351. doi: 10.12942/lrr-2001-1.
- The concordance model of cosmology. In Modern Cosmology, pages 1–19. Elsevier, 2021. doi: 10.1016/b978-0-12-815948-4.00007-3.
- Shinji Tsujikawa. Quintessence: A Review. Classical and Quantum Gravity, 30(21):214003, November 2013. ISSN 0264-9381, 1361-6382. doi: 10.1088/0264-9381/30/21/214003.
- Bouncing cosmologies: Progress and problems. Foundations of Physics, 47(6):797–850, February 2017. doi: 10.1007/s10701-016-0057-0. URL https://doi.org/10.1007%2Fs10701-016-0057-0.
- A critical review of classical bouncing cosmologies. Physics Reports, 571:1–66, April 2015. doi: 10.1016/j.physrep.2014.12.004.
- M NOVELLO and S BERGLIAFFA. Bouncing cosmologies. Physics Reports, 463(4):127–213, July 2008. doi: 10.1016/j.physrep.2008.04.006.
- Bouncing cosmology made simple. Classical and Quantum Gravity, 35(13):135004, June 2018. doi: 10.1088/1361-6382/aac482.
- Bouncing cosmological isotropic solutions in scalar-tensor gravity. Journal of Cosmology and Astroparticle Physics, 2022(01):052, January 2022. doi: 10.1088/1475-7516/2022/01/052.
- Bouncing universes in scalar-tensor gravity models admitting negative potentials. Journal of Cosmology and Astroparticle Physics, 2015(07):002–002, July 2015b. doi: 10.1088/1475-7516/2015/07/002.
- V Bozza. A general solution for scalar perturbations in bouncing cosmologies. Journal of Cosmology and Astroparticle Physics, 2006(02):009–009, February 2006. doi: 10.1088/1475-7516/2006/02/009.
- V Bozza and G Veneziano. Regular two-component bouncing cosmologies and perturbations therein. Journal of Cosmology and Astroparticle Physics, 2005(09):007–007, September 2005a. doi: 10.1088/1475-7516/2005/09/007.
- V. Bozza and G. Veneziano. Scalar perturbations in regular two-component bouncing cosmologies. Physics Letters B, 625(3-4):177–183, October 2005b. doi: 10.1016/j.physletb.2005.08.052.
- Planck 2018 results. Astronomy & Astrophysics, 641:A6, September 2020. ISSN 1432-0746. doi: 10.1051/0004-6361/201833910.
- Scalar Field Cosmology. WORLD SCIENTIFIC, April 2019. doi: 10.1142/11405.
- C. Brans and R. H. Dicke. Mach’s principle and a relativistic theory of gravitation. Physical Review, 124(3):925–935, November 1961. doi: 10.1103/physrev.124.925.
- A. Avilez and C. Skordis. Cosmological constraints on brans-dicke theory. Physical Review Letters, 113(1), July 2014. doi: 10.1103/physrevlett.113.011101. URL https://doi.org/10.1103%2Fphysrevlett.113.011101.
- Constraints on the brans-dicke gravity theory with the planck data. Physical Review D, 88(8), October 2013. doi: 10.1103/physrevd.88.084053. URL https://doi.org/10.1103%2Fphysrevd.88.084053.
- Solar system tests in brans–dicke and palatini f(ℛ)𝑓ℛf(\mathcal{{R}})italic_f ( caligraphic_R )-theories. The European Physical Journal Plus, 135(12), December 2020. doi: 10.1140/epjp/s13360-020-00982-9. URL https://doi.org/10.1140%2Fepjp%2Fs13360-020-00982-9.
- Cosmology in Brans–Dicke–de Rham–Gabadadze–Tolley massive gravity. Physical Review D, 105(12), jun 2022. doi: 10.1103/physrevd.105.123515. URL https://doi.org/10.1103%2Fphysrevd.105.123515.
- Equivalence of jordan and einstein frames at the quantum level. The European Physical Journal Plus, 132(3), March 2017. doi: 10.1140/epjp/i2017-11385-0. URL https://doi.org/10.1140%2Fepjp%2Fi2017-11385-0.
- A question mark on the equivalence of einstein and jordan frames. Physics Letters B, 754:129–134, mar 2016. doi: 10.1016/j.physletb.2016.01.022. URL https://doi.org/10.1016%2Fj.physletb.2016.01.022.
- Einstein and jordan frame correspondence in quantum cosmology: expansion-collapse duality. The European Physical Journal C, 83(9), sep 2023. doi: 10.1140/epjc/s10052-023-11934-9. URL https://doi.org/10.1140%2Fepjc%2Fs10052-023-11934-9.
- Observational constraints on quintessence: Thawing, tracker, and scaling models. Physical Review D, 87(8), apr 2013. doi: 10.1103/physrevd.87.083505. URL https://doi.org/10.1103%2Fphysrevd.87.083505.
- Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett., 82:896–899, Feb 1999. doi: 10.1103/PhysRevLett.82.896.
- Robert H. Brandenberger. Quantum field theory methods and inflationary universe models. Reviews of Modern Physics, 57(1):1–60, jan 1985. doi: 10.1103/revmodphys.57.1. URL https://doi.org/10.1103%2Frevmodphys.57.1.
- Tommi Markkanen. Light scalars on cosmological backgrounds. Journal of High Energy Physics, 2018(1), jan 2018. doi: 10.1007/jhep01(2018)116. URL https://doi.org/10.1007%2Fjhep01%282018%29116.
- Quantum correlators in friedmann spacetimes: The omnipresent de sitter spacetime and the invariant vacuum noise. Physical Review D, 98(10), nov 2018. doi: 10.1103/physrevd.98.105015. URL https://doi.org/10.1103%2Fphysrevd.98.105015.
- de sitter breaking through infrared divergences. Journal of Mathematical Physics, 51(7):072503, jul 2010. doi: 10.1063/1.3448926. URL https://doi.org/10.1063%2F1.3448926.
- J Hwang. Cosmological perturbations in generalised gravity theories: formulation. Classical and Quantum Gravity, 7(9):1613–1632, September 1990a. doi: 10.1088/0264-9381/7/9/013.
- Jai-chan Hwang. Cosmological perturbations in generalized gravity theories: Solutions. Physical Review D, 42(8):2601–2606, October 1990b. doi: 10.1103/physrevd.42.2601.
- Jai-chan Hwang. Cosmological perturbations in generalized gravity theories: conformal transformation. Classical and Quantum Gravity, 14(7):1981–1991, July 1997. doi: 10.1088/0264-9381/14/7/029.
- V Mukhanov. Theory of cosmological perturbations. Physics Reports, 215(5-6):203–333, June 1992. doi: 10.1016/0370-1573(92)90044-z.
- Cosmological perturbations in generalized gravity theories. Physical Review D, 54(2):1460–1473, July 1996. doi: 10.1103/physrevd.54.1460.
- Jai-chan Hwang. Unified analysis of cosmological perturbations in generalized gravity. Physical Review D, 53(2):762–765, January 1996. doi: 10.1103/physrevd.53.762.
- Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Physical Review D, 65(2), December 2001. doi: 10.1103/physrevd.65.023512.
- Cosmological perturbation theory. Progress of Theoretical Physics Supplement, 78:1–166, 1984. doi: 10.1143/ptps.78.1.
- V F Mukhanov. Gravitational instability of the universe filled with a scalar field. Pis’ma v Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki, 41:402–405, 5 1985.
- Reconstructing the Dark Energy Potential. Journal of Cosmology and Astroparticle Physics, 2018(01):018–018, January 2018. ISSN 1475-7516. doi: 10.1088/1475-7516/2018/01/018.
- Dark Energy Equation of State Parameter and Its Variation at Low Redshifts. Journal of Cosmology and Astroparticle Physics, 2017(06):012–012, June 2017. ISSN 1475-7516. doi: 10.1088/1475-7516/2017/06/012.
- G. Efstathiou. Constraining the equation of state of the universe from distant type ia supernovae and cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 310(3):842–850, Dec 1999. ISSN 1365-2966. doi: 10.1046/j.1365-8711.1999.02997.x.
- Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory. Journal of Cosmology and Astroparticle Physics, 2013(10):040–040, October 2013. doi: 10.1088/1475-7516/2013/10/040. URL https://doi.org/10.1088%2F1475-7516%2F2013%2F10%2F040.
- Frame independent cosmological perturbations. Journal of Cosmology and Astroparticle Physics, 2013(09):027–027, September 2013. doi: 10.1088/1475-7516/2013/09/027. URL https://doi.org/10.1088%2F1475-7516%2F2013%2F09%2F027.
- Non-minimal couplings, quantum geometry and black-hole entropy. Classical and Quantum Gravity, 20(20):4473–4484, sep 2003. doi: 10.1088/0264-9381/20/20/310. URL https://doi.org/10.1088%2F0264-9381%2F20%2F20%2F310.
- Dilaton gravity in two dimensions. Physics Reports, 369(4):327–430, oct 2002. doi: 10.1016/s0370-1573(02)00267-3. URL https://doi.org/10.1016%2Fs0370-1573%2802%2900267-3.
- Positive specific heat of the quantum corrected dilaton black hole. Journal of High Energy Physics, 2003(07):009–009, jul 2003. doi: 10.1088/1126-6708/2003/07/009. URL https://doi.org/10.1088%2F1126-6708%2F2003%2F07%2F009.
- Model of a decaying cosmological constant. Physical Review D, 42(2):361–370, jul 1990. doi: 10.1103/physrevd.42.361. URL https://doi.org/10.1103%2Fphysrevd.42.361.
- Eanna E Flanagan. The conformal frame freedom in theories of gravitation. Classical and Quantum Gravity, 21(15):3817–3829, jul 2004. doi: 10.1088/0264-9381/21/15/n02. URL https://doi.org/10.1088%2F0264-9381%2F21%2F15%2Fn02.
- Comparison between jordan and einstein frames of brans-dicke gravity a la loop quantum cosmology. Physical Review D, 88(10), nov 2013. doi: 10.1103/physrevd.88.104010. URL https://doi.org/10.1103%2Fphysrevd.88.104010.
- Question of quantum equivalence between jordan frame and einstein frame. Physical Review D, 91(8), apr 2015. doi: 10.1103/physrevd.91.084033. URL https://doi.org/10.1103%2Fphysrevd.91.084033.
- (pseudo)issue of the conformal frame revisited. Physical Review D, 75(2), January 2007. doi: 10.1103/physrevd.75.023501. URL https://doi.org/10.1103%2Fphysrevd.75.023501.
- Stress energy correlator in de sitter spacetime: Its conformal masking or growth in connected friedmann universes. Physical Review D, 102(8), oct 2020. doi: 10.1103/physrevd.102.085009. URL https://doi.org/10.1103%2Fphysrevd.102.085009.
- Possible quantum effects at the transition from cosmological deceleration to acceleration. Physical Review D, 106(6), sep 2022. doi: 10.1103/physrevd.106.063520. URL https://doi.org/10.1103%2Fphysrevd.106.063520.
- Unruh dewitt probe of late time revival of quantum correlations in friedmann spacetimes. Physical Review D, 106(12), dec 2022. doi: 10.1103/physrevd.106.125006. URL https://doi.org/10.1103%2Fphysrevd.106.125006.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.