On the Home-Space Problem for Petri Nets and its Ackermannian Complexity (2207.02697v5)
Abstract: A set of configurations $H$ is a home-space for a set of configurations $X$ of aPetri net if every configuration reachable from (any configuration in) $X$ can reach (some configuration in) $H$. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations $X$, $H$, if $H$ is a home-space for $X$. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when $X$ is a singleton and $H$ is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any semilinear set of configurations $H$ we can effectively compute a semilinear set $C$ of configurations, called a non-reachability core for $H$, such that for every set $X$ the set $H$ is not a home-space for $X$ if, and only if, $C$ is reachable from $X$. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.