Papers
Topics
Authors
Recent
Search
2000 character limit reached

GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot Learning

Published 5 Jul 2022 in cs.CV and cs.LG | (2207.01798v2)

Abstract: Generalized Zero-Shot Learning (GZSL) aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes. It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes. However, due to the generation shifts, the synthesized samples by most existing methods may drift from the real distribution of the unseen data. To address this issue, we propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation. Specifically, we discover and address three potential problems that trigger the generation shifts, i.e., semantic inconsistency, variance collapse, and structure disorder. First, to enhance the reflection of the semantic information in the generated samples, we explicitly embed the semantic information into the transformation in each conditional affine coupling layer. Second, to recover the intrinsic variance of the real unseen features, we introduce a boundary sample mining strategy with entropy maximization to discover more difficult visual variants of semantic prototypes and hereby adjust the decision boundary of the classifiers. Third, a relative positioning strategy is proposed to revise the attribute embeddings, guiding them to fully preserve the inter-class geometric structure and further avoid structure disorder in the semantic space. Extensive experimental results on four GZSL benchmark datasets demonstrate that GSMFlow achieves the state-of-the-art performance on GZSL.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.