Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive music generation architecture for games based on the deep learning Transformer mode (2207.01698v2)

Published 4 Jul 2022 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: This paper presents an architecture for generating music for video games based on the Transformer deep learning model. Our motivation is to be able to customize the generation according to the taste of the player, who can select a corpus of training examples, corresponding to his preferred musical style. The system generates various musical layers, following the standard layering strategy currently used by composers designing video game music. To adapt the music generated to the game play and to the player(s) situation, we are using an arousal-valence model of emotions, in order to control the selection of musical layers. We discuss current limitations and prospects for the future, such as collaborative and interactive control of the musical components.

Citations (2)

Summary

We haven't generated a summary for this paper yet.