Papers
Topics
Authors
Recent
2000 character limit reached

NVIF: Neighboring Variational Information Flow for Large-Scale Cooperative Multi-Agent Scenarios (2207.00964v1)

Published 3 Jul 2022 in cs.MA

Abstract: Communication-based multi-agent reinforcement learning (MARL) provides information exchange between agents, which promotes the cooperation. However, existing methods cannot perform well in the large-scale multi-agent system. In this paper, we adopt neighboring communication and propose a Neighboring Variational Information Flow (NVIF) to provide efficient communication for agents. It employs variational auto-encoder to compress the shared information into a latent state. This communication protocol does not rely dependently on a specific task, so that it can be pre-trained to stabilize the MARL training. Besides. we combine NVIF with Proximal Policy Optimization (NVIF-PPO) and Deep Q Network (NVIF-DQN), and present a theoretical analysis to illustrate NVIF-PPO can promote cooperation. We evaluate the NVIF-PPO and NVIF-DQN on MAgent, a widely used large-scale multi-agent environment, by two tasks with different map sizes. Experiments show that our method outperforms other compared methods, and can learn effective and scalable cooperation strategies in the large-scale multi-agent system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.