Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Transformer-based Conversational ASR by Inter-Sentential Attention Mechanism (2207.00883v1)

Published 2 Jul 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Transformer-based models have demonstrated their effectiveness in automatic speech recognition (ASR) tasks and even shown superior performance over the conventional hybrid framework. The main idea of Transformers is to capture the long-range global context within an utterance by self-attention layers. However, for scenarios like conversational speech, such utterance-level modeling will neglect contextual dependencies that span across utterances. In this paper, we propose to explicitly model the inter-sentential information in a Transformer based end-to-end architecture for conversational speech recognition. Specifically, for the encoder network, we capture the contexts of previous speech and incorporate such historic information into current input by a context-aware residual attention mechanism. For the decoder, the prediction of current utterance is also conditioned on the historic linguistic information through a conditional decoder framework. We show the effectiveness of our proposed method on several open-source dialogue corpora and the proposed method consistently improved the performance from the utterance-level Transformer-based ASR models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kun Wei (23 papers)
  2. Pengcheng Guo (55 papers)
  3. Ning Jiang (177 papers)
Citations (9)