Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Rapidly Mixing Multiple-try Metropolis Algorithms for Model Selection Problems (2207.00689v2)

Published 1 Jul 2022 in stat.ME and stat.CO

Abstract: The multiple-try Metropolis (MTM) algorithm is an extension of the Metropolis-Hastings (MH) algorithm by selecting the proposed state among multiple trials according to some weight function. Although MTM has gained great popularity owing to its faster empirical convergence and mixing than the standard MH algorithm, its theoretical mixing property is rarely studied in the literature due to its complex proposal scheme. We prove that MTM can achieve a mixing time bound smaller than that of MH by a factor of the number of trials under a general setting applicable to high-dimensional model selection problems with discrete state spaces. Our theoretical results motivate a new class of weight functions called locally balanced weight functions and guide the choice of the number of trials, which leads to improved performance over standard MTM algorithms. We support our theoretical results by extensive simulation studies and real data applications with several Bayesian model selection problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.