2000 character limit reached
Borsuk's partition problem in four-dimensional $\ell_{p}$ space (2206.15277v2)
Published 30 Jun 2022 in math.MG
Abstract: In 1933, Borsuk made a conjecture that every $n$-dimensional bounded set can be divided into $n+1$ subsets of smaller diameter. Up to now, the problem is still open for $4\leq n\leq 63$. In this paper, we firstly discuss the Banach-Mazur distance between the $n$-dimensional cube and the $\ell_{p}$ ball $(1\leq p< 2)$, then we study the generalized Borsuk's partition problem in metric spaces and prove that all bounded sets $X$ in every four-dimensional $\ell_{p}$ space can be divided into $24$ subsets of smaller diameter.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.