Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Euclid preparation: XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images (2206.14944v2)

Published 29 Jun 2022 in astro-ph.GA

Abstract: Next generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFR) can be measured with deep learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that Deep Learning Neural Networks and Convolutional Neutral Networks (CNN), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multi-band magnitudes together with $H_{\scriptscriptstyle\rm E}$-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving i) the redshift within a normalised error of less than 0.15 for 99.9$\%$ of the galaxies with S/N>3 in the $H_{\scriptscriptstyle\rm E}$-band; ii) the stellar mass within a factor of two ($\sim0.3 \rm dex$) for 99.5$\%$ of the considered galaxies; iii) the SFR within a factor of two ($\sim0.3 \rm dex$) for $\sim$70$\%$ of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.