Papers
Topics
Authors
Recent
2000 character limit reached

Unlimited lists of fundamental units of quadratic fields -- Applications to some arithmetic properties (2206.13931v2)

Published 28 Jun 2022 in math.NT

Abstract: We use the polynomials $m_s(t) = t2 - 4 s$, $s \in {-1, 1}$, in an elementary process giving arbitrary large lists of {\it fundamental units} of quadratic fields of discriminants listed in ascending order. More precisely, let $\mathbf{B} \gg 0$; then as $t$ grows from $1$ to $\mathbf{B}$, for each {\it first occurrence} of a square-free integer $M \geq 2$, in the factorization $m_s(t) =: M r2$, the unit $\frac{1}{2} \big(t + r \sqrt{M}\big)$ is the fundamental unit of norm $s$ of $\mathbb{Q}(\sqrt M)$, even if $r >1$ (Theorem 4.1). Using $m_{s\nu}(t) = t2 - 4 s \nu$, $\nu \geq 2$, the algorithm gives arbitrary large lists of {\it fundamental solutions} to $u2 - M v2= 4s\nu$ (Theorem 4.11). We deduce, for $p>2$ prime, arbitrary large lists of {\it non $p$-rational} quadratic fields (Theorems 6.3, 6.4, 6.5) and of degree $p-1$ imaginary fields with non-trivial $p$-class group (Theorems 7.1,7.2). PARI programs are given to be copied and pasted.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.