2000 character limit reached
Finite Littlestone Dimension Implies Finite Information Complexity (2206.13257v1)
Published 27 Jun 2022 in cs.LG, cs.IT, and math.IT
Abstract: We prove that every online learnable class of functions of Littlestone dimension $d$ admits a learning algorithm with finite information complexity. Towards this end, we use the notion of a globally stable algorithm. Generally, the information complexity of such a globally stable algorithm is large yet finite, roughly exponential in $d$. We also show there is room for improvement; for a canonical online learnable class, indicator functions of affine subspaces of dimension $d$, the information complexity can be upper bounded logarithmically in $d$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.