Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities (2206.13051v2)
Abstract: In this paper, we investigate the following fractional Sobolev critical nonlinear Schr\"{o}dinger (NLS) coupled systems: \begin{equation*} \left{\begin{array}{lll} (-\Delta){s} u=\mu_{1} u+|u|{2{*}{s}-2}u+\eta{1}|u|{p-2}u+\gamma\alpha|u|{\alpha-2}u|v|{\beta} ~ \text{in}~ \mathbb{R}{N},\ (-\Delta){s} v=\mu_{2} v+|v|{2{*}{s}-2}v+\eta{2}|v|{q-2}v+\gamma\beta|u|{\alpha}|v|{\beta-2}v ~~\text{in}~ \mathbb{R}{N},\ |u|{2}{L{2}}=m{1}{2} ~\text{and}~ |v|{2}{L{2}}=m{2}{2}, \end{array}\right. \end{equation*} where $(-\Delta){s}$ is the fractional Laplacian, $N={3,4}$, $s\in(0,1)$, $\mu_{1}, \mu_{2}\in\mathbb{R}$ are unknown constants, which will appear as Lagrange multipliers, $2{*}_{s}$ is the fractional Sobolev critical index, $\eta_{1}, \eta_{2}, \gamma, m_{1}, m_{2}>0$, $\alpha>1, \beta>1$, $p, q, \alpha+\beta\in(2+4s/N,2{*}_{s}]$. Firstly, if $p, q, \alpha+\beta<2{*}_{s}$, we obtain the existence of positive normalized solution when $\gamma$ is big enough. Secondly, if $p=q=\alpha+\beta=2{*}_{s}$, we show that nonexistence of positive normalized solution. The main ideas and methods of this paper are scaling transformation, classification discussion and concentration-compactness principle.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.