Papers
Topics
Authors
Recent
2000 character limit reached

Fock-Goncharov dual cluster varieties and Gross-Siebert mirrors

Published 21 Jun 2022 in math.AG, hep-th, and math.SG | (2206.10584v3)

Abstract: Cluster varieties come in pairs: for any $\mathcal{X}$ cluster variety there is an associated Fock-Goncharov dual $\mathcal{A}$ cluster variety. On the other hand, in the context of mirror symmetry, associated with any log Calabi-Yau variety is its mirror dual, which can be constructed using the enumerative geometry of rational curves in the framework of the Gross-Siebert program. In this paper we bridge the theory of cluster varieties with the algebro-geometric framework of Gross-Siebert mirror symmetry. Particularly, we show that the mirror to the $\mathcal{X}$ cluster variety is a degeneration of the Fock-Goncharov dual $\mathcal{A}$ cluster variety and vice versa. To do this, we investigate how the cluster scattering diagram of Gross-Hacking-Keel-Kontsevich compares with the canonical scattering diagram defined by Gross-Siebert to construct mirror duals in arbitrary dimensions. Consequently, we derive an enumerative interpretation of the cluster scattering diagram. Along the way, we prove the Frobenius structure conjecture for a class of log Calabi-Yau varieties obtained as blow-ups of toric varieties.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.