Papers
Topics
Authors
Recent
2000 character limit reached

niksss at HinglishEval: Language-agnostic BERT-based Contextual Embeddings with Catboost for Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text

Published 17 Jun 2022 in cs.CL | (2206.08910v1)

Abstract: This paper describes the system description for the HinglishEval challenge at INLG 2022. The goal of this task was to investigate the factors influencing the quality of the code-mixed text generation system. The task was divided into two subtasks, quality rating prediction and annotators disagreement prediction of the synthetic Hinglish dataset. We attempted to solve these tasks using sentence-level embeddings, which are obtained from mean pooling the contextualized word embeddings for all input tokens in our text. We experimented with various classifiers on top of the embeddings produced for respective tasks. Our best-performing system ranked 1st on subtask B and 3rd on subtask A.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.