Simulations for the Q statistic with constant and inverse variance weights for binary effect measures (2206.08907v2)
Abstract: Cochran's $Q$ statistic is routinely used for testing heterogeneity in meta-analysis. Its expected value (under an incorrect null distribution) is part of several popular estimators of the between-study variance, $\tau2$. Those applications generally do not account for the studies' use of estimated variances in the inverse-variance weights that define $Q$ (more explicitly, $Q_{IV}$). Importantly, those weights make approximating the distribution of $Q_{IV}$ rather complicated. As an alternative, we are investigating a $Q$ statistic, $Q_F$, whose constant weights use only the studies' arm-level sample sizes. For log-odds-ratio, log-relative-risk, and risk difference as the measure of effect, these simulations study approximations to the distributions of $Q_F$ and $Q_{IV}$, as the basis for tests of heterogeneity. We present the results in 132 Figures, 153 pages in total.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.