Visualizing Attractors of the Three-Dimensional Generalized Hénon Map
Abstract: We study dynamics of a generic quadratic diffeomorphism, a 3D generalization of the planar H\'{e}non map. Focusing on the dissipative, orientation preserving case, we give a comprehensive parameter study of codimension-one and two bifurcations. Periodic orbits, born at resonant, Neimark-Sacker bifurcations, give rise to Arnold tongues in parameter space. Aperiodic attractors include invariant circles and chaotic orbits; these are distinguished by rotation number and Lyapunov exponents. Chaotic orbits include H\'{e}non-like and Lorenz-like attractors, which can arise from period-doubling cascades, and those born from the destruction of invariant circles. The latter lie on paraboloids near the local unstable manifold of a fixed point.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.