Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Indexing Temporal Relations for Range-Duration Queries (2206.07428v1)

Published 15 Jun 2022 in cs.DB

Abstract: Temporal information plays a crucial role in many database applications, however support for queries on such data is limited. We present an index structure, termed RD-index, to support range-duration queries over interval timestamped relations, which constrain both the range of the tuples' positions on the timeline and their duration. RD-index is a grid structure in the two-dimensional space, representing the position on the timeline and the duration of timestamps, respectively. Instead of using a regular grid, we consider the data distribution for the construction of the grid in order to ensure that each grid cell contains approximately the same number of intervals. RD-index features provable bounds on the running time of all the operations, allow for a simple implementation, and supports very predictable query performance. We benchmark our solution on a variety of datasets and query workloads, investigating both the query rate and the behavior of the individual queries. The results show that RD-index performs better than the baselines on range-duration queries, for which it is explicitly designed. Furthermore, it outperforms specialized indexes also on workloads containing queries constraining either only the duration or the range.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube