Papers
Topics
Authors
Recent
2000 character limit reached

Morphence-2.0: Evasion-Resilient Moving Target Defense Powered by Out-of-Distribution Detection

Published 15 Jun 2022 in cs.CR and cs.LG | (2206.07321v1)

Abstract: Evasion attacks against machine learning models often succeed via iterative probing of a fixed target model, whereby an attack that succeeds once will succeed repeatedly. One promising approach to counter this threat is making a model a moving target against adversarial inputs. To this end, we introduce Morphence-2.0, a scalable moving target defense (MTD) powered by out-of-distribution (OOD) detection to defend against adversarial examples. By regularly moving the decision function of a model, Morphence-2.0 makes it significantly challenging for repeated or correlated attacks to succeed. Morphence-2.0 deploys a pool of models generated from a base model in a manner that introduces sufficient randomness when it responds to prediction queries. Via OOD detection, Morphence-2.0 is equipped with a scheduling approach that assigns adversarial examples to robust decision functions and benign samples to an undefended accurate models. To ensure repeated or correlated attacks fail, the deployed pool of models automatically expires after a query budget is reached and the model pool is seamlessly replaced by a new model pool generated in advance. We evaluate Morphence-2.0 on two benchmark image classification datasets (MNIST and CIFAR10) against 4 reference attacks (3 white-box and 1 black-box). Morphence-2.0 consistently outperforms prior defenses while preserving accuracy on clean data and reducing attack transferability. We also show that, when powered by OOD detection, Morphence-2.0 is able to precisely make an input-based movement of the model's decision function that leads to higher prediction accuracy on both adversarial and benign queries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.