Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Hybrid Finite Element and Material Point Method to Simulate Granular Column Collapse from Failure Initiation to Runout (2206.07169v1)

Published 14 Jun 2022 in physics.geo-ph

Abstract: The performance evaluation of a potentially unstable slope involves two key components: the initiation of the slope failure and the post-failure runout. The Finite Element Method (FEM) excels at modeling the initiation of instability but quickly loses accuracy in modeling large-deformation problems due to mesh distortion. Hence, the FEM is unable to accurately model post-failure slope runout. Hybrid Eulerian-Lagrangian methods, such as the Material Point Method (MPM), offer a promising alternative for solving large-deformation problems, because particles can move freely across a background mesh, allowing for large deformation without computational issues. However, the use of moving material points in MPM for integration rather than the fixed Gauss points of the FEM reduces the accuracy of MPM in predicting stress distribution and thus failure initiation. We have created a hybrid method by initiating a failure simulation in FEM and subsequently transferring the coordinates, velocities, and stresses to MPM particles to model the runout behavior, combining the strength of both methods. We demonstrate the capability of the hybrid approach by simulating the collapse of a frictional granular column, comparing it to an empirical solution, and evaluating a suitable time to transfer from FEM to MPM by trialing multiple iterations with transfers at different stages of the collapse.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube