Monitoring Urban Forests from Auto-Generated Segmentation Maps (2206.06948v1)
Abstract: We present and evaluate a weakly-supervised methodology to quantify the spatio-temporal distribution of urban forests based on remotely sensed data with close-to-zero human interaction. Successfully training machine learning models for semantic segmentation typically depends on the availability of high-quality labels. We evaluate the benefit of high-resolution, three-dimensional point cloud data (LiDAR) as source of noisy labels in order to train models for the localization of trees in orthophotos. As proof of concept we sense Hurricane Sandy's impact on urban forests in Coney Island, New York City (NYC) and reference it to less impacted urban space in Brooklyn, NYC.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.