Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Machine Learning Inference on Inequality of Opportunity (2206.05235v3)

Published 10 Jun 2022 in econ.EM

Abstract: Equality of opportunity has emerged as an important ideal of distributive justice. Empirically, Inequality of Opportunity (IOp) is measured in two steps: first, an outcome (e.g., income) is predicted given individual circumstances; and second, an inequality index (e.g., Gini) of the predictions is computed. Machine Learning (ML) methods are tremendously useful in the first step. However, they can cause sizable biases in IOp since the bias-variance trade-off allows the bias to creep in the second step. We propose a simple debiased IOp estimator robust to such ML biases and provide the first valid inferential theory for IOp. We demonstrate improved performance in simulations and report the first unbiased measures of income IOp in Europe. Mother's education and father's occupation are the circumstances that explain the most. Plug-in estimators are very sensitive to the ML algorithm, while debiased IOp estimators are robust. These results are extended to a general U-statistics setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.