Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Efficient Distributionally Robust Decentralized Learning (2205.15614v3)

Published 31 May 2022 in cs.LG, cs.AI, and eess.SP

Abstract: Decentralized learning algorithms empower interconnected devices to share data and computational resources to collaboratively train a machine learning model without the aid of a central coordinator. In the case of heterogeneous data distributions at the network nodes, collaboration can yield predictors with unsatisfactory performance for a subset of the devices. For this reason, in this work, we consider the formulation of a distributionally robust decentralized learning task and we propose a decentralized single loop gradient descent/ascent algorithm (AD-GDA) to directly solve the underlying minimax optimization problem. We render our algorithm communication-efficient by employing a compressed consensus scheme and we provide convergence guarantees for smooth convex and non-convex loss functions. Finally, we corroborate the theoretical findings with empirical results that highlight AD-GDA's ability to provide unbiased predictors and to greatly improve communication efficiency compared to existing distributionally robust algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.