Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally Robust Federated Learning: An ADMM Algorithm (2503.18436v1)

Published 24 Mar 2025 in cs.LG

Abstract: Federated learning (FL) aims to train ML models collaboratively using decentralized data, bypassing the need for centralized data aggregation. Standard FL models often assume that all data come from the same unknown distribution. However, in practical situations, decentralized data frequently exhibit heterogeneity. We propose a novel FL model, Distributionally Robust Federated Learning (DRFL), that applies distributionally robust optimization to overcome the challenges posed by data heterogeneity and distributional ambiguity. We derive a tractable reformulation for DRFL and develop a novel solution method based on the alternating direction method of multipliers (ADMM) algorithm to solve this problem. Our experimental results demonstrate that DRFL outperforms standard FL models under data heterogeneity and ambiguity.

Summary

We haven't generated a summary for this paper yet.