Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DR-DSGD: A Distributionally Robust Decentralized Learning Algorithm over Graphs (2208.13810v2)

Published 29 Aug 2022 in cs.LG

Abstract: In this paper, we propose to solve a regularized distributionally robust learning problem in the decentralized setting, taking into account the data distribution shift. By adding a Kullback-Liebler regularization function to the robust min-max optimization problem, the learning problem can be reduced to a modified robust minimization problem and solved efficiently. Leveraging the newly formulated optimization problem, we propose a robust version of Decentralized Stochastic Gradient Descent (DSGD), coined Distributionally Robust Decentralized Stochastic Gradient Descent (DR-DSGD). Under some mild assumptions and provided that the regularization parameter is larger than one, we theoretically prove that DR-DSGD achieves a convergence rate of $\mathcal{O}\left(1/\sqrt{KT} + K/T\right)$, where $K$ is the number of devices and $T$ is the number of iterations. Simulation results show that our proposed algorithm can improve the worst distribution test accuracy by up to $10\%$. Moreover, DR-DSGD is more communication-efficient than DSGD since it requires fewer communication rounds (up to $20$ times less) to achieve the same worst distribution test accuracy target. Furthermore, the conducted experiments reveal that DR-DSGD results in a fairer performance across devices in terms of test accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.