Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CalFAT: Calibrated Federated Adversarial Training with Label Skewness (2205.14926v3)

Published 30 May 2022 in cs.LG and cs.DC

Abstract: Recent studies have shown that, like traditional machine learning, federated learning (FL) is also vulnerable to adversarial attacks. To improve the adversarial robustness of FL, federated adversarial training (FAT) methods have been proposed to apply adversarial training locally before global aggregation. Although these methods demonstrate promising results on independent identically distributed (IID) data, they suffer from training instability on non-IID data with label skewness, resulting in degraded natural accuracy. This tends to hinder the application of FAT in real-world applications where the label distribution across the clients is often skewed. In this paper, we study the problem of FAT under label skewness, and reveal one root cause of the training instability and natural accuracy degradation issues: skewed labels lead to non-identical class probabilities and heterogeneous local models. We then propose a Calibrated FAT (CalFAT) approach to tackle the instability issue by calibrating the logits adaptively to balance the classes. We show both theoretically and empirically that the optimization of CalFAT leads to homogeneous local models across the clients and better convergence points.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chen Chen (753 papers)
  2. Yuchen Liu (156 papers)
  3. Xingjun Ma (114 papers)
  4. Lingjuan Lyu (131 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.