Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAT: Federated Adversarial Training (2012.01791v1)

Published 3 Dec 2020 in cs.LG and cs.CR

Abstract: Federated learning (FL) is one of the most important paradigms addressing privacy and data governance issues in ML. Adversarial training has emerged, so far, as the most promising approach against evasion threats on ML models. In this paper, we take the first known steps towards federated adversarial training (FAT) combining both methods to reduce the threat of evasion during inference while preserving the data privacy during training. We investigate the effectiveness of the FAT protocol for idealised federated settings using MNIST, Fashion-MNIST, and CIFAR10, and provide first insights on stabilising the training on the LEAF benchmark dataset which specifically emulates a federated learning environment. We identify challenges with this natural extension of adversarial training with regards to achieved adversarial robustness and further examine the idealised settings in the presence of clients undermining model convergence. We find that Trimmed Mean and Bulyan defences can be compromised and we were able to subvert Krum with a novel distillation based attack which presents an apparently "robust" model to the defender while in fact the model fails to provide robustness against simple attack modifications.

Citations (41)

Summary

We haven't generated a summary for this paper yet.