Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Looks Like Magic: Transfer Learning in GANs to Generate New Card Illustrations (2205.14442v1)

Published 28 May 2022 in cs.CV and cs.LG

Abstract: In this paper, we propose MAGICSTYLEGAN and MAGICSTYLEGAN-ADA - both incarnations of the state-of-the-art models StyleGan2 and StyleGan2 ADA - to experiment with their capacity of transfer learning into a rather different domain: creating new illustrations for the vast universe of the game "Magic: The Gathering" cards. This is a challenging task especially due to the variety of elements present in these illustrations, such as humans, creatures, artifacts, and landscapes - not to mention the plethora of art styles of the images made by various artists throughout the years. To solve the task at hand, we introduced a novel dataset, named MTG, with thousands of illustration from diverse card types and rich in metadata. The resulting set is a dataset composed by a myriad of both realistic and fantasy-like illustrations. Although, to investigate effects of diversity we also introduced subsets that contain specific types of concepts, such as forests, islands, faces, and humans. We show that simpler models, such as DCGANs, are not able to learn to generate proper illustrations in any setting. On the other side, we train instances of MAGICSTYLEGAN using all proposed subsets, being able to generate high quality illustrations. We perform experiments to understand how well pre-trained features from StyleGan2 can be transferred towards the target domain. We show that in well trained models we can find particular instances of noise vector that realistically represent real images from the dataset. Moreover, we provide both quantitative and qualitative studies to support our claims, and that demonstrate that MAGICSTYLEGAN is the state-of-the-art approach for generating Magic illustrations. Finally, this paper highlights some emerging properties regarding transfer learning in GANs, which is still a somehow under-explored field in generative learning research.

Summary

We haven't generated a summary for this paper yet.