Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Quantum Gravity in the Lab on Quantum Processors (2205.14081v2)

Published 27 May 2022 in quant-ph, cs.ET, gr-qc, and hep-th

Abstract: The holographic principle and its realization in the AdS/CFT correspondence led to unexpected connections between general relativity and quantum information. This set the stage for studying aspects of quantum gravity models, which are otherwise difficult to access, in table-top quantum-computational experiments. Recent works have designed a special teleportation protocol that realizes a surprising communication phenomenon most naturally explained by the physics of a traversable wormhole. In this work, we have carried out quantum experiments based on this protocol on state-of-the-art quantum computers. The target quantum processing units (QPUs) included the Quantinuum's trapped-ion System Model H1-1 and five IBM superconducting QPUs of various architectures, with public and premium user access. We report the observed teleportation signals from these QPUs with the best one reaching 80% of theoretical predictions. We outline the experimental challenges we have faced in the course of implementation, as well as the new theoretical insights into quantum dynamics the work has led to. We also developed QGLab -- an open-source end-to-end software solution that facilitates conducting the wormhole-inspired teleportation experiments on state-of-the-art and emergent generations of QPUs supported by the Qiskit and tket SDKs. We consider our study and deliverables as an early practical step towards the realization of more complex experiments for the indirect probing of quantum gravity in the lab.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. J. D. Bekenstein. Black holes and the second law. Lettere al Nuovo Cimento (1971-1985), 4, 1972. doi: 10.1007/BF02757029.
  2. Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346, Apr 1973. doi: 10.1103/PhysRevD.7.2333.
  3. Jacob D. Bekenstein. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D, 9:3292–3300, 1974. doi: 10.1103/PhysRevD.9.3292.
  4. S. W. Hawking. Black hole explosions? Nature, 248(5443):30–31, March 1974. doi: 10.1038/248030a0.
  5. Microscopic origin of the bekenstein-hawking entropy. Physics Letters B, 379(1):99–104, 1996. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(96)00345-0.
  6. Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998. doi: 10.1023/A:1026654312961.
  7. Gauge theory correlators from non-critical string theory. Physics Letters B, 428(1-2):105–114, may 1998. doi: 10.1016/s0370-2693(98)00377-3.
  8. Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998. doi: 10.4310/ATMP.1998.v2.n2.a2.
  9. John McGreevy. Holographic duality with a view toward many-body physics. Advances in High Energy Physics, 2010:1–54, 2010. doi: 10.1155/2010/723105.
  10. Digital Quantum Simulation of Minimal AdS/CFT. Phys. Rev. Lett., 119(4):040501, 2017. doi: 10.1103/PhysRevLett.119.040501.
  11. Creating and probing the sachdev–ye–kitaev model with ultracold gases: Towards experimental studies of quantum gravity. Progress of Theoretical and Experimental Physics, 2017(8), Aug 2017. ISSN 2050-3911. doi: 10.1093/ptep/ptx108.
  12. M. Franz and M. Rozali. Mimicking black hole event horizons in atomic and solid-state systems. Nature Rev. Mater., 3:491–501, 2018. doi: 10.1038/s41578-018-0058-z.
  13. Quantum Gravity in the Lab. I. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4(1):010320, 2023. doi: 10.1103/PRXQuantum.4.010320.
  14. Analogue models of and for gravity. Gen. Rel. Grav., 34:1719–1734, 2002. doi: 10.1023/A:1020180409214.
  15. Tabletop experiments for quantum gravity: a user’s manual. Classical and Quantum Gravity, 36(3):034001, jan 2019. doi: 10.1088/1361-6382/aaf9ca.
  16. Quantum Gravity in the Lab. II. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4(1):010321, 2023. doi: 10.1103/PRXQuantum.4.010321.
  17. Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol. Phys. Rev. X, 12(3):031013, 2022. doi: 10.1103/PhysRevX.12.031013.
  18. Verified Quantum Information Scrambling. Nature, 567(7746):61–65, 2019. doi: 10.1038/s41586-019-0952-6.
  19. Quantum Information Scrambling on a Superconducting Qutrit Processor. Phys. Rev. X, 11(2):021010, 2021. doi: 10.1103/PhysRevX.11.021010.
  20. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett., 121:264101, Dec 2018a. doi: 10.1103/PhysRevLett.121.264101.
  21. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X, 9(2):021033, 2019. doi: 10.1103/PhysRevX.9.021033.
  22. Traversable Wormholes via a Double Trace Deformation. JHEP, 12:151, 2017. doi: 10.1007/JHEP12(2017)151.
  23. Diving into traversable wormholes. Fortschritte der Physik, 65(5):1700034, May 2017a. ISSN 1521-3978. doi: 10.1002/prop.201700034. URL http://dx.doi.org/10.1002/prop.201700034.
  24. Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos. Phys. Rev. Lett., 121(26):264101, 2018b. doi: 10.1103/PhysRevLett.121.264101.
  25. Averaged Null Energy Condition from Causality. JHEP, 07:066, 2017. doi: 10.1007/JHEP07(2017)066.
  26. Cool horizons for entangled black holes. Fortsch. Phys., 61:781–811, 2013. doi: 10.1002/prop.201300020.
  27. Diving into traversable wormholes. Fortsch. Phys., 65(5):1700034, 2017b. doi: 10.1002/prop.201700034.
  28. How to build the thermofield double state. Journal of High Energy Physics, 2019(2), feb 2019. doi: 10.1007/jhep02(2019)058.
  29. Eternal traversable wormhole, 4 2018. URL https://arxiv.org/abs/1804.00491.
  30. Vincent Paul Su. Variational preparation of the thermofield double state of the sachdev-ye-kitaev model. Phys. Rev. A, 104:012427, Jul 2021. doi: 10.1103/PhysRevA.104.012427.
  31. SYK wormhole formation in real time. JHEP, 04:258, 2021. doi: 10.1007/JHEP04(2021)258.
  32. Validating quantum computers using randomized model circuits. Phys. Rev. A, 100:032328, Sep 2019. doi: 10.1103/PhysRevA.100.032328.
  33. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN 1107002176.
  34. IBM Quantum. https://www.ibm.com/quantum-computing. Online. Accessed on 19-May-2022.
  35. Laser-annealing josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Information, 7(1), aug 2021. doi: 10.1038/s41534-021-00464-5.
  36. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Physical Review Letters, 119(18), oct 2017. doi: 10.1103/physrevlett.119.180501.
  37. Demonstration of the trapped-ion quantum ccd computer architecture. Nature, 592(7853):209–213, Apr 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03318-4.
  38. Honeywell system model h1 fidelity and quantum volume. https://www.honeywell.com/us/en/news/2021/07/honeywell-sets-another-record-for-quantum-computing-performance. Accessed: 2021-09-24.
  39. Tackling the qubit mapping problem for nisq-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, page 1001–1014, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362405. doi: 10.1145/3297858.3304023.
  40. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, Jan 2017. ISSN 1476-4687. doi: 10.1038/nature23879.
  41. Unfolding quantum computer readout noise. npj Quantum Inf., 6(1):84, Sep 2020. ISSN 2056-6387. doi: 10.1038/s41534-020-00309-7.
  42. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94:052325, Nov 2016. doi: 10.1103/PhysRevA.94.052325.
  43. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett., 127:270502, Dec 2021. doi: 10.1103/PhysRevLett.127.270502.
  44. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, Jun 2017. doi: 10.1103/PhysRevX.7.021050.
  45. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017. doi: 10.1103/PhysRevLett.119.180509.
  46. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567(7749):491–495, Mar 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1040-7.
  47. QGLab. https://gitlab.com/ishapova/qglab. Online. Accessed on 8-Feb-2022.
  48. Generation of thermofield double states and critical ground states with a quantum computer. Proceedings of the National Academy of Sciences, 117(41):25402–25406, 2020. doi: 10.1073/pnas.2006337117.
  49. Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett., 123:220502, Nov 2019. doi: 10.1103/PhysRevLett.123.220502.
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube