Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards future directions in data-integrative supervised prediction of human aging-related genes (2205.13088v1)

Published 26 May 2022 in q-bio.MN

Abstract: Identification of human genes involved in the aging process is critical due to the incidence of many diseases with age. A state-of-the-art approach for this purpose infers a weighted dynamic aging-specific subnetwork by mapping gene expression (GE) levels at different ages onto the protein-protein interaction network (PPIN). Then, it analyzes this subnetwork in a supervised manner by training a predictive model to learn how network topologies of known aging- vs. non-aging-related genes change across ages. Finally, it uses the trained model to predict novel aging-related genes. However, the best current subnetwork resulting from this approach still yields suboptimal prediction accuracy. This could be because it was inferred using outdated GE and PPIN data. Here, we evaluate whether analyzing a weighted dynamic aging-specific subnetwork inferred from newer GE and PPIN data improves prediction accuracy upon analyzing the best current subnetwork inferred from outdated data. Unexpectedly, we find that not to be the case. To understand this, we perform aging-related pathway and Gene Ontology (GO) term enrichment analyses. We find that the suboptimal prediction accuracy, regardless of which GE or PPIN data is used, may be caused by the current knowledge about which genes are aging-related being incomplete, or by the current methods for inferring or analyzing an aging-specific subnetwork being unable to capture all of the aging-related knowledge. These findings can potentially guide future directions towards improving supervised prediction of aging-related genes via -omics data integration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.