Papers
Topics
Authors
Recent
2000 character limit reached

Highly efficient energy-conserving moment method for the multi-dimensional Vlasov-Maxwell system

Published 25 May 2022 in math.NA and cs.NA | (2205.12907v3)

Abstract: We present an energy-conserving numerical scheme to solve the Vlasov-Maxwell (VM) system based on the regularized moment method proposed in [Z. Cai, Y. Fan, and R. Li. CPAM, 2014]. The globally hyperbolic moment system is deduced for the multi-dimensional VM system under the framework of the Hermite expansions, where the expansion center and the scaling factor are set as the macroscopic velocity and local temperature, respectively. Thus, the effect of the Lorentz force term could be reduced into several ODEs about the macroscopic velocity and the moment coefficients of higher order, which could significantly reduce the computational cost of the whole system. An energy-conserving numerical scheme is proposed to solve the moment equations and the Maxwell equations, where only a linear equation system needs to be solved. Several numerical examples such as the two-stream instability, Weibel instability, and the two-dimensional Orszag Tang vortex problem are studied to validate the efficiency and excellent energy-preserving property of the numerical scheme.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.