Papers
Topics
Authors
Recent
2000 character limit reached

NECA: Network-Embedded Deep Representation Learning for Categorical Data

Published 25 May 2022 in cs.LG and cs.AI | (2205.12752v1)

Abstract: We propose NECA, a deep representation learning method for categorical data. Built upon the foundations of network embedding and deep unsupervised representation learning, NECA deeply embeds the intrinsic relationship among attribute values and explicitly expresses data objects with numeric vector representations. Designed specifically for categorical data, NECA can support important downstream data mining tasks, such as clustering. Extensive experimental analysis demonstrated the effectiveness of NECA.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.