Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Task-Incremental Learning Baselines (2205.11367v1)

Published 23 May 2022 in cs.AI

Abstract: It is common to have continuous streams of new data that need to be introduced in the system in real-world applications. The model needs to learn newly added capabilities (future tasks) while retaining the old knowledge (past tasks). Incremental learning has recently become increasingly appealing for this problem. Task-incremental learning is a kind of incremental learning where task identity of newly included task (a set of classes) remains known during inference. A common goal of task-incremental methods is to design a network that can operate on minimal size, maintaining decent performance. To manage the stability-plasticity dilemma, different methods utilize replay memory of past tasks, specialized hardware, regularization monitoring etc. However, these methods are still less memory efficient in terms of architecture growth or input data costs. In this study, we present a simple yet effective adjustment network (SAN) for task incremental learning that achieves near state-of-the-art performance while using minimal architectural size without using memory instances compared to previous state-of-the-art approaches. We investigate this approach on both 3D point cloud object (ModelNet40) and 2D image (CIFAR10, CIFAR100, MiniImageNet, MNIST, PermutedMNIST, notMNIST, SVHN, and FashionMNIST) recognition tasks and establish a strong baseline result for a fair comparison with existing methods. On both 2D and 3D domains, we also observe that SAN is primarily unaffected by different task orders in a task-incremental setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Md Sazzad Hossain (10 papers)
  2. Pritom Saha (1 paper)
  3. Townim Faisal Chowdhury (4 papers)
  4. Shafin Rahman (38 papers)
  5. Fuad Rahman (12 papers)
  6. Nabeel Mohammed (27 papers)
Citations (4)