Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CNNs Avoid Curse of Dimensionality by Learning on Patches (2205.10760v4)

Published 22 May 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Despite the success of convolutional neural networks (CNNs) in numerous computer vision tasks and their extraordinary generalization performances, several attempts to predict the generalization errors of CNNs have only been limited to a posteriori analyses thus far. A priori theories explaining the generalization performances of deep neural networks have mostly ignored the convolutionality aspect and do not specify why CNNs are able to seemingly overcome curse of dimensionality on computer vision tasks like image classification where the image dimensions are in thousands. Our work attempts to explain the generalization performance of CNNs on image classification under the hypothesis that CNNs operate on the domain of image patches. Ours is the first work we are aware of to derive an a priori error bound for the generalization error of CNNs and we present both quantitative and qualitative evidences in the support of our theory. Our patch-based theory also offers explanation for why data augmentation techniques like Cutout, CutMix and random cropping are effective in improving the generalization error of CNNs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.