Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slowly Changing Adversarial Bandit Algorithms are Efficient for Discounted MDPs (2205.09056v3)

Published 18 May 2022 in cs.LG

Abstract: Reinforcement learning generalizes multi-armed bandit problems with additional difficulties of a longer planning horizon and unknown transition kernel. We explore a black-box reduction from discounted infinite-horizon tabular reinforcement learning to multi-armed bandits, where, specifically, an independent bandit learner is placed in each state. We show that, under ergodicity and fast mixing assumptions, any slowly changing adversarial bandit algorithm achieving optimal regret in the adversarial bandit setting can also attain optimal expected regret in infinite-horizon discounted Markov decision processes, with respect to the number of rounds $T$. Furthermore, we examine our reduction using a specific instance of the exponential-weight algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ian A. Kash (25 papers)
  2. Lev Reyzin (24 papers)
  3. Zishun Yu (7 papers)