Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-stationary Reinforcement Learning without Prior Knowledge: An Optimal Black-box Approach (2102.05406v3)

Published 10 Feb 2021 in cs.LG, cs.AI, and stat.ML

Abstract: We propose a black-box reduction that turns a certain reinforcement learning algorithm with optimal regret in a (near-)stationary environment into another algorithm with optimal dynamic regret in a non-stationary environment, importantly without any prior knowledge on the degree of non-stationarity. By plugging different algorithms into our black-box, we provide a list of examples showing that our approach not only recovers recent results for (contextual) multi-armed bandits achieved by very specialized algorithms, but also significantly improves the state of the art for (generalized) linear bandits, episodic MDPs, and infinite-horizon MDPs in various ways. Specifically, in most cases our algorithm achieves the optimal dynamic regret $\widetilde{\mathcal{O}}(\min{\sqrt{LT}, \Delta{1/3}T{2/3}})$ where $T$ is the number of rounds and $L$ and $\Delta$ are the number and amount of changes of the world respectively, while previous works only obtain suboptimal bounds and/or require the knowledge of $L$ and $\Delta$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chen-Yu Wei (46 papers)
  2. Haipeng Luo (99 papers)
Citations (90)