Mean-Field Nonparametric Estimation of Interacting Particle Systems
Abstract: This paper concerns the nonparametric estimation problem of the distribution-state dependent drift vector field in an interacting $N$-particle system. Observing single-trajectory data for each particle, we derive the mean-field rate of convergence for the maximum likelihood estimator (MLE), which depends on both Gaussian complexity and Rademacher complexity of the function class. In particular, when the function class contains $\alpha$-smooth H{\"o}lder functions, our rate of convergence is minimax optimal on the order of $N{-\frac{\alpha}{d+2\alpha}}$. Combining with a Fourier analytical deconvolution argument, we derive the consistency of MLE for the external force and interaction kernel in the McKean-Vlasov equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.