Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues (2205.07540v1)

Published 16 May 2022 in cs.CL and cs.AI

Abstract: How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports on a first attempt at an AI teacher test. We built a solution around the insight that you can run conversational agents in parallel to human teachers in real-world dialogues, simulate how different agents would respond to a student, and compare these counterpart responses in terms of three abilities: speak like a teacher, understand a student, help a student. Our method builds on the reliability of comparative judgments in education and uses a probabilistic model and Bayesian sampling to infer estimates of pedagogical ability. We find that, even though conversational agents (Blender in particular) perform well on conversational uptake, they are quantifiably worse than real teachers on several pedagogical dimensions, especially with regard to helpfulness (Blender: {\Delta} ability = -0.75; GPT-3: {\Delta} ability = -0.93).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anaïs Tack (3 papers)
  2. Chris Piech (33 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.