Papers
Topics
Authors
Recent
Search
2000 character limit reached

Word Embeddings and Validity Indexes in Fuzzy Clustering

Published 26 Apr 2022 in cs.CL and cs.AI | (2205.06802v1)

Abstract: In the new era of internet systems and applications, a concept of detecting distinguished topics from huge amounts of text has gained a lot of attention. These methods use representation of text in a numerical format -- called embeddings -- to imitate human-based semantic similarity between words. In this study, we perform a fuzzy-based analysis of various vector representations of words, i.e., word embeddings. Also we introduce new methods of fuzzy clustering based on hybrid implementation of fuzzy clustering methods with an evolutionary algorithm named Forest Optimization. We use two popular fuzzy clustering algorithms on count-based word embeddings, with different methods and dimensionality. Words about covid from Kaggle dataset gathered and calculated into vectors and clustered. The results indicate that fuzzy clustering algorithms are very sensitive to high-dimensional data, and parameter tuning can dramatically change their performance. We evaluate results of experiments with various clustering validity indexes to compare different algorithm variation with different embeddings accuracy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.