Double crossed biproducts and related structures (2205.06433v1)
Abstract: Let $H$ be a bialgebra. Let $\sigma: H\otimes H\to A$ be a linear map, where $A$ is a left $H$-comodule coalgebra, and an algebra with a left $H$-weak action $\triangleright$. Let $\tau: H\otimes H\to B$ be a linear map, where $B$ is a right $H$-comodule coalgebra, and an algebra with a right $H$-weak action $\triangleleft$. In this paper, we improve the necessary conditions for the two-sided crossed product algebra $A#{\sigma} H~{{\tau}#} B$ and the two-sided smash coproduct coalgebra $A\times H\times B$ to form a bialgebra (called double crossed biproduct) such that the condition $b_{[1]}\triangleright a_0\otimes b_{[0]}\triangleleft a_{-1}=a\otimes b$ in Majid's double biproduct (or double-bosonization) is one of the necessary conditions. On the other hand, we provide a more general two-sided crossed product algebra structure via Brzez\'nski's crossed product and give some applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.