Local cohomology under small perturbations (2205.05616v1)
Abstract: Let $(R,\mathfrak{m})$ be a Noetherian local ring and $I$ an ideal of $R$. We study how local cohomology modules with support in $\mathfrak{m}$ change for small perturbations $J$ of $I$, that is, for ideals $J$ such that $I\equiv J\bmod \mathfrak{m}N$ for large $N$, under the hypothesis that $I$ and $J$ share the same Hilbert function. As one of our main results, we show that if $R/I$ is generalized Cohen-Macaulay, then the local cohomology modules of $R/J$ are isomorphic to the corresponding local cohomology modules of $R/I$, except possibly the top one. In particular, this answers a question raised by Quy and V. D. Trung. Our approach also allows us to prove that if $R/I$ is Buchsbaum, then so is $R/J$. Finally, under some additional assumptions, we show that if $R/I$ satisfies Serre's property $(S_n)$, then so does $R/J$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.