Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Transferability for Covid 3D Localization Using CT SARS-CoV-2 segmentation models

Published 4 May 2022 in eess.IV, cs.CV, and cs.LG | (2205.02152v4)

Abstract: Recent studies indicate that detecting radiographic patterns on CT scans can yield high sensitivity and specificity for Covid-19 localization. In this paper, we investigate the appropriateness of deep learning models transferability, for semantic segmentation of pneumonia-infected areas in CT images. Transfer learning allows for the fast initialization/reutilization of detection models, given that large volumes of training data are not available. Our work explores the efficacy of using pre-trained U-Net architectures, on a specific CT data set, for identifying Covid-19 side-effects over images from different datasets. Experimental results indicate improvement in the segmentation accuracy of identifying Covid-19 infected regions.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.